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The transport equation for the destruction of temperature fluctuations in a turbulent 
shear flow is briefly discussed from the point of view of the experimenter’s ability 
to measure the important terms. The transport equation for only one component of 
the destruction, the mean-square streamwise temperature derivative, is considered 
in detail in the case of a steady two-dimensional turbulent shear flow. Measurements 
of most of the terms in this equation have been made in the self-preserving region 
of a turbulent plane jet. They indicate that the advection and diffusion terms are 
negligible compared with the production and dissipation terms. The measured terms 
are discussed in the context of local isotropy. Mean-square values of second-order 
derivatives satisfy local isotropy more closely than those of first-order derivatives. 

1. Introduction 
A characteristic timescale 7, of velocity fluctuations in a turbulent flow is given 

by the ratio ?”/, where ( = u2 + v2 + w2) is twice the turbulent kinetic energy and 
E is the average rate of dissipation of @. Analogously, _ -  a characteristic timescale r8 
of temperature fluctuations may be written as 0 2 / N ,  where @ is the mean-square 
temperature fluctuation and p (sometimes the symbols or E, are used) is the rate 
of dissipation of @; i.e. = O I ( ~ B / ~ X ~ ) ~ ,  where a is the thermal diffusivity and the 
summation convention on repeated indices is understood. The ratio r0/r ,  was found 
(BBguier, Dekeyser & Launder 1978) to be nearly uniform with a value close to 0.5 
in several thin shear flows provided that the velocity and thermal fields have common 
origins. These flows include wall turbulence, where the budgets of @ and +@ are 
dominated by production and dissipation, and free shear flows, where production and 
dissipation remain the principal terms of the budgets. BBguier et al. (1978) and 
Newman, Launder & Lumley (1981) also pointed out that r,/r, will not, in general, 
be constant. Launder (1976) reported a twofold variation in r,/r, for only a narrow 
span of flows and concluded that the ratio ro/7, is not sufficiently constant to serve 
as a general method for determining r. 

Transport equations for % and @ should in principle lead to a useful second-order 
closure model for heat and concentration transfer. Newman et al. (1981) proposed an 
approximate transport equation for and reported satisfactory agreement of the 
model with a limited number of homogeneous scalar flows. Elghobashi & Launder 
(1981) showed that this model also correctly simulated the spread of a thermal mixing 
layer behind a half-heated grid. The experimenter’s ability to measure all three 
components of N(e.g. Freymuth & Uberoi 1971 ; Sreenivasan, Antonia & Danh 1977) 
is extremely important from the point of view of providing experimental verification 
of the transport equation for F. Without this ability, the verification would be 
constrained by the use of local isotropy. 

_ _ -  
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The equation for r is briefly discussed in $2, not with an intention of modelling, 
but primarily with a view to assess the experimenter’s ability to measure its terms. 
The transport equation for one component of r, the mean-square streamwise 
derivative of temperature (aO/i3x)2, is considered in more detail and it is ascertained 
that most of the terms are accessible to measurement using standard hot-wire and 
cold-wire techniques. These terms have been measured in the self-preserving region 
of a turbulent plane jet. The experimental techniques used and the difficulties 
associated with the derivative measurements are discussed in 3 3. The measurements 
are presented and discussed in $4. Implications with regard to local isotropy are also 
discussed. 

2. Transport equations for N and (aO/ax)2 

The transport equation for a(ae/axi)2 or Ncan be derived (e.g. Corrsin 1953) from 
the equation for instantaneous temperature fluctuation (obtained by subtracting the 
equation for the incompressible mean heat-transfer rate from the Reynolds form of 
the instantaneous heat-transfer equation) 

where u, is the mean velocity and Tis the mean temperature. Differentiating (1) with 
respect to x,, multiplying the resulting equation by 01 ae/ax, and averaging yields the 
transport equation for g. For a steady flow, 

ZJ33ac a -  
+2a--- + - ( u i N )  U i -  +2aui-- 

- aiT 7% a2T 

ax, axi ax, axj ax, axi ax, ax, 
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where V2 is the Laplacian a2/axi ax,. The temperature-gradient-fluctuation equation 
( 2 )  was derived by Corrsin (1953), who compared it with the vorticity-fluctuation 
equation. Corrsin noted the existence of apparently significant differences between 
these two equations, but pointed out that a closer analogy existed between the 
behaviour of (ae/ax,)2, rather than 8 itself, and that of vorticity. Corrsin suggested 
a tentative physical interpretation of terms I-IV and term VII in (2) by analogy to 
corresponding terms in the transport equation for 2. Equation (2) was also discussed 
by Lumley & Khajeh-Nouri (1974) (see also Launder 1976). Wyngaard (1971) 
considered the locally isotropic form of (2) for high-Reynolds-number stationary 
turbulence. In  this form, (2) essentially reduces to a balance between V and VII (see 
also Tennekes & Lumley 1972). Term V represents the production of (a8/ax,)2 due 
to the stretching of the temperature field by the turbulent strain field. Term VII is 
identified with the molecular smoothing of the temperature gradient field. 

An order-of-magnitude argument? (e.g. Tennekes & Lumley 1972; Owen 1973) can 

t While conventional order-of-magnitude arguments provide a useful indication of the magnitude 
of the terms of (2), they become somewhat tenuous when all the terms in the transport equation 
reduce to zero when local isotropy is involved. This occurs when the transport equation for (a13/as)~ 
is considered (Wyngaard 1976; Sreenivasan & Tavoularis 1980). 
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be used to  show that terms V and VII, which involve interactions between fine-scale 
temperature and/or velocity fluctuations, are the dominant terms of (2), at least for 
sufficiently large Reynolds and PBclet numbers. These terms can be interpreted as 
the production and dissipation terms respectively for p. Term V is of order au, O; /A3 ,  
where us and 8, are characteristic velocity and temperature scales respectively, and 
A is the Taylor microscale. Strictly V is O(au, B;/A: A ) ,  where A, is the temperature 
microscale analogous to A. For present purposes, the molecular Prandtl number is 
assumed equal to unity and no distinction is made between A, and A. Terms I and 
IV are O(au,8:/ZA2), where 1 is an integral lengthscale of the turbulence, and hence 
of order R,, ( = u,h/u) smaller than V.  Terms I11 and VI are O(au, &/A21) and hence 
of the same order as I or IV. Term I1 is O(ausB;/AZ2), hence O(R,) smaller than I 
or IV and will not be considered further. To O(R,) or O ( u , l / v ) ~  all terms except I1 
need to be considered. From a modelling point of view, since the difference between 
V and VII is O(u,Z/u)-~,  a useful predictive equation should also contain the terms 
I, 111, IV and VI, which are of this order. 

The instantaneous value of N can be obtained with two pairs of parallel wires, an 
arrangement investigated by Sreenivasan et aZ. (1977). This arrangement is somewhat 
cumbersome and would lead to spatial resolution constraints if used in conjunction 
with an X-probe, as required for the measurement of several terms of (2). 

Denoting components of ui in the usual (x, y, z )  coordinate system by u, v and w, 
the simultaneous measurement of ae/ay and iW/az is required for the correlations 
(ae/ay) (ae/az) (awl&) and (aO/ay) (ae/az) (aw/ay) which form part of the production 
term (see (3)). It would seem that only one pair of parallel cold wires, which may 
be rotated to yield ae/ay and ae/az separately, is sufficient for the measurement of 
many terms in (2). We should, however, focus our attention on the important terms 
V and VII of (2). Term V can be expanded as 

~~~ ae ae av ae ae aw 

With the assumption that terms involving a/ax can be inferred from time derivatives 
using Taylor’s hypothesis @/ax = - U-’ a@), the first three terms on the right can 
be obtained by placing one X-probe next to one pair of cold wires. The following two 
terms require one pair of hot wires next to one pair of cold wires. The sixth and 
seventh terms involve derivatives in the y- and z-directions and require two X-probes 
(their replacement with two V-probes may lead to an improvement in spatial 
resolution) next to one pair of cold wires. The measurement of the last two terms 
is more complicated as two X-probes (or V-probes) and two pairs of parallel wires 
would be required. 

Term VII can be rewritten as 

where the second term on the right could be physically interpreted as the molecular 
diffusion of temperature-gradient-fluctuation intensity by conduction. This term is, 
however, negligible compared with the first, using the order-of-magnitude argument 
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which was previously applied to (2). Components of (a28/axi axj)2 that include a/ax 
are obtainable using Taylor's hypothesis, but components that  include derivatives 
in the y- and/or z-directions are less easily obtainable. 

Significant reduction in the complexity of measurement results by considering only 
the streamwise component of (2). The transport equation for (&3/i3x)2 can be obtained 
from (2) by puttingj = 1 and dividing by a. When the mean flow is two-dimensional, 
this equation is (the numbering in (2) is retained) 

u- -an - +v- -a(")' - + 2  mai7 - -+2---- K e a V  
ax ay ay ax ax ax axayax 

.f / -  I 

I I11 

-' Y J 

IV V 
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VI VII 

Only x-derivatives of velocity components appear in the correlations in ( 5 ) ,  so that 
only one X-probe is required, assuming Taylor's hypothesis. While all terms in ( 5 )  
are, in principle, accessible to hot- and cold-wire techniques, the second and third 
components of V have not been measured in the present investigation as their 
measurement would require unavoidably large separations between velocity and 
temperature sensors. Their value is estimated by assuming local isotropy (see (6)). 

3. Experimental arrangement and conditions 
A detailed description of the jet facility and instrumentation is given in Antonia 

et al. (1983). It is sufficient to note here that the jet' issues from a nozzle of width 
d = 12.7 mm and height 25 cm. Two confining horizontal plates are located at the 
top and bottom of the nozzle to help maintain the two-dimensionality of the flow. 
The present measurements were made at a distance x from the nozzle equal to 40d. 
The jet Reynolds number based on d is 7620. The jet was heated to a temperature 
at the nozzle exit of about 25OC above ambient. The flow was approximately 
self-preserving for x/d 2 20. 

Fluctuations u, v were measured with an X-probe with 2.5 pm Pt wires of about 
0.4 mm in length and separated by about 0.4 mm. The same X-probe was rotated 
through 90° to allow measurements of w. The wires were operated with constant- 
temperature anemometers a t  an overheat of 0.8. A 0.63 pm (Pt-10 % Rh) cold wire 
was located 0.4 mm upstream of the centre of the X-probe and perpendicular to the 
plane of the X-probe. Transverse derivatives of temperature were estimated by 
subtracting the signals of two parallel cold wires (0.63 pm diameter, 0.43 mm long, 
separated by 0.47 mm, the resistances of these wires were matched to better than 
0.5 % ). The cold wires were operated as resistance thermometers with constant-current 
(0.1 mA) circuits. 

Mestayer & Chambaud (1979) noted that errors associated with the use of parallel 
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cold wires could arise from a possible difference between wire time constants and 
possible errors in estimating the temperature sensitivities of the wires. The latter 
possibility was minimized by carrying out the temperature calibration of the wire 
pair (and associated electronics) in the jet exit plane. The frequency response of the 
cold wires was estimated using the pulsed-wire technique of Antonia, Browne & 
Chambers (1981) to  extend beyond the Kolmogorov frequency f K  ( = u/27clK, where 
1,  is the Kolmogorov microscale). Since the cold-wire signals were filtered (see below) 
a t  a frequency slightly smaller than fK,  the error was considered to be negligible. 

For the X-probe/cold-wire arrangement, the analog voltages from the constant- 
temperature and constant-current anemometers were first recorded on analog tape 
and subsequently digitized. The temperature contamination of the hot-wire signals 
was removed and these signals were subsequently linearized by the computer. 
Differentiation of these signals and of the cold-wire signal were also implemented 
using the computer. For the parallel cold-wire arrangement, analog circuits were 
used to obtain a/a t  and the difference, proportional to M/ay or a8/az, between the 
cold-wire voltages. These voltages were low-pass filtered with a cutoff frequency f, 
equal to about 0.9fK and subsequently digitized at a frequency equal to 2f,. The 
magnitude off, depends on the signal-to-noise ratio of the wire (equal to about 7 in 
the case of a8/at and about 5 for W/ay or M / a z  for the 0.63 pm wires).? The selection 
of f, followed inspection of the spectrum of M/at;  the frequency a t  which this 
spectrum merged with the noise spectrum (obtained and stored in a real-time 
spectrum analyser when the wire was in the jet exit plane) was first identified and 
f, was subsequently set a t  a frequency (smaller than that at which merging occurred) 
corresponding to about 2 dB above that of the merging frequency. Since it is desirable 
that f, is a t  least equal to fK, some attenuation of the high-frequency end of the 
spectra of derivatives would be expected. To compensate for this effect, a8/at was 
also obtained with a 0.25 pm PtrlO% Rh cold wire (length x 0.22 mm, current 
= 0.05 mA). I n  view of the improved signal-to-noise ratio, the differentiated 
output from this wire was filtered at f, = 1.2fK. The length of this wire was sufficiently 
comparable to the Kolmogorov scale to ignore wire-length corrections. Values of 
(au/at)2 and fK were determined using a single hot wire (1.3 pm Pt ,  length = 0.22 mm) 
for which wire-length corrections were also negligible. While the magnitudes of the 
ratios (a8/ay)2/l(aelaz)z and (a8/az)2/(a8/ax)2 were determined from the parallel 
0.63 pm wires, absolute values of (a8/ay)2 and (a6/az)2 were calculated using the value 
of (a8/ax)z obtained with the 0.25pm cold wire. Similarly, absolute values of 
correlations that include the velocity derivative au/ax were inferred using the value 
of (au/az)z obtained with the 1.3 pm hot wire. For consistency, the relative 
magnitudes of the three components of the dissipation term in (5 )  were determined 
from spectra of aelat, Cl8/ay, aB/az obtained with the parallel 0.63 pm cold wires. The 
absolute magnitudes of these components were calculated using the values of 
obtained with the 0.25 pm cold wire. 

Streamwise derivatives of velocity and temperature have been inferred from 
temporal derivatives using Taylor’s hypothesis. Available corrections (e.g. Wyngaard 
& Clifford 1977) for the effect of a fluctuating convection velocity on Taylor’s 
hypothesis and hence on the mean squared values of a8lax and a28/ax2 were not 
applied for reasons discussed in Antonia et al. (1981) and Browne, Antonia & 
Rajagopalan (1982). 

On the jet centreline at xld = 40, R, (obtained by substituting (2)i for us) is about 

t Mean-square values of the derivatives and differences were corrected by subtracting, on a 
rnean-square basis, contributions from the noise. 
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9 

FIGURE 1. Mean-square temperature derivatives and ratio of r.m.s. derivatives in 2- and 
y-directions: ---, ( M / i 3 x ) 2 L 2 , / ~ ;  -, {(ae/ay)z/(ae/az)z}b. 

190, the PBclet number (= (u2)aAs/a, where A, = (@~/(aO/az)z)i) is about 100, the 
Kolmogorov scale 1 ,  is 0.16 mm. The mean temperature T,, relative to ambient, is 
9 O C ,  while the mean velocity U,  is 3.4 m/s. The jet velocity half-width L, is 60 mm. 
The ratios (G)i/U,, (V")i/U, and (w")a/U, are equal to about 0.18, 0.14 and 0.15 
respectively at the centreline. 

Flow reversal was first detected at a distance y from the jet centreline equal to 
about L,. When reversal occurs, the thermal wakes from the X-probe wires 
contaminate the signal from the cold wire upstream of the X-probe. Both the 
intensity and frequency of contamination increase as 7 (= y/L,) increases, with 
a consequent impairment of the accuracy of measurement. For this reason, data 
extending only to 7 w 1 are presented in $4. 

4. Results and discussion 
Before discussing the equation for (aO/ax)z, it seems appropriate to note that 

was obtained (Antonia et al. 1983) by measuring all three components. The 
distribution, over the jet half-width, of (af?/az)z, normalized by L, and T,, is shown 
in figure 1. The components (aO/ay)z and (a6/az)z are roughly equal but larger than 
(aO/ax)z. The ratio {(aO/ay)z/(aO/az)z}i (figure 1 )  increased from about 1.24 at 7 = 0 
to 1.4 at 7 = 1 .  On the basis of these measurements local isotropy is violated. The 
magnitude of did, however, lead to a satisfactory closure (figure 2) of the budget 
for @, providing support for the observed inequality between and (aO/ay)z 
or (aO/az)z. This inequality has been observed in a boundary layer (Sreenivasan et 
al. 1977; Verollet 1972) and in a quasihomogeneous turbulent shear flow (Tavoularis 
& Corrsin 1981). By contrast, Freymuth & Uberoi's (1971) budget of @ in the 
two-dimensional wake of a cylinder indicated approximate equality between the three 
components of 

The terms of ( 5 ) ,  normalized by multiplying with LL/U, T& have been obtained 
by assuming self-preserving distributions for the time-averaged quantities and using 

and good closure for the budget. 



Destruction of temperature $fluctuations in a turbulent jet 73 

-5 x 10-3 

0 

Production 

Diffusion 

c -A/--- -- --I 
f Imbalance \ 

'. -7 

Dissipation - - _ _ _ _ _ _ _ - - -  ------- -------_ L- - - 5x10-3i 10-2 0 0.2 0.4 v 0.6 0.8 1 .o 

FIGURE 2. Measured budget of 4s. All terms of the budget have been multiplied by L,/ U ,  q. 

the experimentally determined values of dLu/dx, dT,/dx and dUo/dx to estimate 
derivatives with respect to x and y for derivatives of these time-averaged quantities. 
For example, the advection term I can be written 

where 

and experimental values of dLu/dx (= 0.104) and (Lu/T,) dT,/dx ( = -0.04) were 
used. The functions g, k and f were obtained using cubic-spline least-square fits to 
the data for u / U o ,  v / U o i  and (a8/ax)2 L i / T i  at x/d = 40. The distribution forf was 
determined by numerically differentiating the fit for f and subsequently applying a 
least-square fit to estimates for the derivative. Expressions for other terms in ( 5 )  were 
obtained by following an analogous procedure. Individual data points are not shown 
in all the figures. It should be noted, however, that the curves shown in these figures 
were either fitted to or derived from best fits to a minimum of 5 and a maximum 
of 8 data points in the range 0 < 7 < 1 .  Some idea of the experimental scatter can 
be seen from figure 3, where the data points are shown together with the least-square 
fits for the correlations which appear in term IV. 

Distributions for terms I ,  111, IV and VI are shown in figure 4. All terms contribute 
to a production of (a8/ax)2 (the production term V is negative) in the region 
0 < 7 5 0.5. Both I11 and IV become positive when7 2 0.5. Of the four terms plotted, 
the advection (term I)  or convection of (a8/ax)z by the mean velocity is clearly the 
largest. The magnitude of term VI, which represents the interaction between the 
mean-temperature gradient and the fine-scale velocity and temperature fields, is small 
everywhere in the range 0 < 9 < 1 .  The distribution of term 111, which represents 

t was obtained using continuity. 
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an interaction between the longitudinal mean strain ratet and the fine-scale 
temperature field, is somewhat similar to that of term IV. This latter term could be 
interpreted as the diffusion or transport of (aO/az)2 by the turbulent velocity field. 
Its magnitude has a maximum value at 7 = 0, but, in contrast to the budget of 
where diffusion is almost three times as large as the advection, this maximum is about 
half the magnitude of the advection. 

The correlations in term VI and the second correlation in I11 should be zero if local 
isotropy is invoked. The experimental distributions for these correlations are shown 

t Note that ac/ay does not appear in (5). 
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FIGURE 5. Correlation coefficients between velocity and/or temperature derivatives : -, 

(av/as) (a6/az)/((av/as)2)k ((at9/as)2)z. Symbols are individual data pointa; curves are least-square 
best fits. 
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in figure 5.  The correlation coefficient between av/ax and dO/ax is negligible near the 
jet centreline. The correlation coefficient between au/ax and M/ax remains constant, 
equal to about 0.2, across the jet. The correlation coefficient between M/ax and aO/ay 
is large, especially at the centreline. For comparison, Tavoularis & Corrsin (1981) 
obtained a value for this coefficient of -0.48 in a quasihomogeneous shear flow with 
a constant mean-temperature gradient. The Reynolds and PBclet numbers in 
Tavoularis & Corrsin’s investigations are comparable to those in the present 
experiment. 

The present measurements for the correlation coefficient between au/ax and 
(aO/ax)2 (component 1 of term V) indicate a magnitude of about 0.3 at 7 = 0. This 
value is in agreement with the previously reported (Van Atta 1974; Antonia & 
Chambers 1980) dependence of this coefficient on Reynolds number. The two other 
components of V were not measured but assumed to be those appropriate to local 
isotropy. The general isotropic form of the tensor (au,/ax,) (ae/axk) (ae/axm) may be 
written as 

Invariance with respect to reflection about the axes requires that c = 0. When i = j 
and k = m, continuity (au,/ax, = 0) requires that a = -$b, so that 

It follows that 

Using these local isotropy relations, term V was calculated, and its distribution across 
the jet is shown in figure 10. A discussion is deferred until term VII has been 
considered. 

Although all components of VII were measured, it is of interest to establish the 
relations between those components which satisfy local isotropy. Using a procedure 
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similar to that for the production term, the general isotropic form of the tensor 
(a20/ax ,  axj) (a28/ax ,  ax,) is given by 

- a, a, a,, + b, a,, a,, +el at, Sj,. 
a2e a2e 

axi as ax, ax, 
Since interchanging i a n d j  or k and m does not alter the correlation, i t  follows that 
b, = el. If it is also noted that t  

(7) 

(8) 

ae a3e 
axi ax, ax, axj 

a28 a20 ae a3e 
axi ax, ax, axj 

+- 

+- 
then subtracting (8) from (7) leads to 

The correlation thus remains unaltered when j and k are interchanged; thus 
a, = b, = el. It follows that 

Relation (9) can also be obtained by making use of the relationships, within the 
framework of local isotropy, between spectra of ae/ax and aO/ay or ae/az. This 
approach is briefly given below since the second-order derivatives were estimated 
from the measured spectra of the first-order derivatives. The nth-order derivative of 
the temperature is related to q5@, the one-dimensional temperature spectrum, as 
follows 

where k, is the one-dimensional wavenumber (k, = w / g ) .  It is more convenient to 
start with the spectrum q5ez of aO/ax (= e x ;  this notation is used only to identify 
spectra) rather than q50, since the derivative M / a t  was recorded during the experiment. 
It follows that 

(G) = Jo +ezz(ki) dki = J 0 kf +s,(kl) dk1, 
00 

(11) 

q5&) =q5sz(k1). (12) 

a28 2 m 

where q5ezz is the spectrum of a28/ax2 (=  exx) .  For isotropy, 

It immediately follows that ( - a20 12 = ( - a28 )2 

axay axaz . 
The relation between q50u or q5sz and 
(1977) : 

has previously been established by Van Atta 

(14) 
W e  
akl 

q5s,(k,) = -h-.  

f The authors are grateful to Dr Wyngaard for pointing out this step. 
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FIGURE 6. Spectral densities of the three temperature derivatives at q = 0 and 1. Upper and 
lower curves are for 7 = 0 and 1 respectively. 

Using ( l l ) ,  (13) and (14),  relation (9) follows, viz 

Experimental spectra of aO/ax, ae/ay and aO/az a t  = 0 and 1 are shown in 
figure 6 in terms of the normalised frequency wL,jU,. The asterisk on 4 denotes 
normalization such that Sa 0 #$@(kl) dk, = 1,  

where ,8 = x, y or z. The relative behaviour of #ox, $av and $ez is consistent with that 
previously reported by Sreenivasan et al. (1977) for the boundary layer. I n  particular, 
$By and #Oz, which are in good agreement with (12),  are significantly richer in 
low-frequency content than $0,. Whereas do, initially increases rapidly with k,, $OM 

and #ez decrease monotonically with k,. Distributions of $8*, multiplied by ( W L , / U ~ ) ~  
are shown in figure 7 for 7 = 0 and 1,  and are roughly symmetrical about the 
frequency at which the peak occurs. The distribution a t  7 = 0 is equivalent to $ex,, 
while that a t  7 = 1 would be equivalent to #exx when Uo is replaced by u.? With 
this proviso, the distributions of (wL,/u2,) $$@ shown in figure 8 could, for 7 = 1,  be 
identified with $ozy and $ezz. These spectral densities rise more rapidly than #ex% near 
the origin and reach a maximum at a frequency which is about 60 yo of that a t  which 

t B = + U , a t q = I .  



78 

80. 

60 

40 

20 

R.  A .  Antonia and L. W.  B. Browne 

I ++  
+++ + +  

+ - + 
+ 

+ F - q = O  + AA A 
A A + A 

- 
4 A 

% A + 
q =  1 - 4  + + A 

A+ 
. 

+ A +  A pc' I A 

FIGURE 7 .  Spectral densities of the x-derivative of temperature weighted by 
the square of the frequency. 
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FIGURE 8. Spectral densities of the y- and z-derivatives of temperature weighted 
by the square of the frequency. 

$exx exhibits a peak. The difference (figures 7,  8) in the qualitative behaviour of +exy 
(or #ezr) and $exx is however significantly smaller than that (figure 6) between 
(or $0,) and $ez, reflecting the extra weighting given to the high-frequency end of 
the spectrum in the case of second-order derivatives. Spectra $ezy and #exz are in 
reasonable argreement with each other, a result which is consistent with (13). The 
appropriately normalized mean-square values of a28/ax ay and a28/ax az, obtained by 
integrating the spectra of figure 8, are also in approximate agreement (figure 9t). 
While there is little variation in these quantities across the jet, (a28/i3x2)2 increases 
for 1;1 > 0.5. In the region 0 < 1;1 5 0.5, the ratios (a28/ax2)2/(a28/axay)2 and 
(a28/a22)2/(a28/a2az)2 are equal to about 2.6, which is 13 % smaller than the value 

t A value of 2.05 x m2/s has been used for a. 
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FIQURE 10. Terms V and VII and imbalance for the budget of (aO/az)z. 
terms are normalized by L9,/ U ,  q. 

As for figure 4, the 

indicated by (9). Term VII ,  which is the sum of the three components of figure 9, 
exhibits a similar behaviour to (a28/ax2)2 over the jet half-width. It is considerably 
larger than the terms in figure 4. 

Term V, obtained with relation (6), is shown in figure 10. I t  is also considerably 
larger than the terms in figure 4 and exhibits a peak near 7 = 0.8; peaks in Ti@, 
and production terms for and 81 also occur near this location. The magnitude of 
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V is slightly smaller than that of VII, also shown in figure 10, near the jet centreline, 
but the trend is reversed for 7 2 0.3. The imbalance, equal to the sum of terms I to 
VII, shown in figure 10, is satisfactorily small near 7 = 0 and 7 = 1 but increases 
to a maximum at 7 x 0.5. The magnitude of this maximum is larger than that of any 
of the terms in figure 4. An explanation for this imbalance could only be speculative 
until experimental verification of (6) becomes available. It should be noted, however, 
that the departure relative to local isotropy, between the three components of 
production, only needs to be of the same order as the measured departure for the 
components of dissipation. A departure from (6) would seem plausible in the light 
of the non-zero values of the correlations in figure 5.  In  particular, the non-zero values 
of the off-diagonal components of (aO/az,) (aO/axj) would seem consistent with an 
anisotropy in the term (a8/azj) (aO/az,) (au,/axi) + ( (aO/azi) (aO/ax,) (8u,/ax,), which 
may be interpreted as the source term in the transport equation for (aO/az{) (aO/azj). 

It is important to note here that, although production and dissipation are large 
and of the same order, their difference tends to be of the same order as other terms 
in the (30/az)2 equation, and thus for predictive purposes all terms need to  be 
considered. Unfortunately, the imbalance (figure 10) is perhaps too large vis-his the 
terms in figure 4 to guide the construction of an accurate model for these latter terms. 

There is a possibility that  the departure from local isotropy, as reflected by the 
magnitude of (&/ax) (aO/az) and (aO/az) (aO/ay), may be due to insufficiently large 
Reynolds and PBclet numbers for the present experiment. Spectra of second-order 
derivatives emphasize relatively high wavenumbers, and the components of the 
dissipation term exhibit only a relatively small (13 "/) departure from local isotropy. 
Van Atta (1977) noted, on the basis of relatively small Reynolds-number boundary- 
layer measurements (Sreenivasan et aZ. 1977) of &=, &, and &,, that  for sufficiently 
high wavenumbers the temperature field is nearly locally isotropic with respect to 
second-order spectral quantities. I n  this latter flow, the ratio (aO/ax)2/(at9/a/3)2 (with 
/3 E y or z) is significantly smaller than unity. In the present flow, the closer 
agreement with isotropy of (azO/az2)2/(a20/ax a/3)2 than (aO/a~)~/(aO/i3/3)~ suggests 
moments of second derivatives are closer to isotropy than moments of first derivatives. 
This is not unreasonable, as the second derivative may be more effective at filtering 
the effects of anisotropy than the first derivative. 

An indication of the location in the spectral domain of contributions by dissipation 
and production to the budget of (i30/az)2 is given in figure 11. The contribution by 
all dissipation terms in VII is shown in that the ~- dissipation spectrum D(kl ZK), when 
integrated over all wavenumbers, is equal to (?128/8x2)2 + (i320/i3z~y)2 + (a26/az a ~ ) ~ .  
Only the spectral contribution from the first term of the production V is shown in 
figure 11, Co(kl ZK) representing the cospectrum between and (aO/az)2 defined 
such that 

Both D and Co have been multiplied by kl lK in figure 11 to give a meaningful 
indication of spectral contributions from term VII and the first term of V. The peaks 
in D and Co are less than one decade apart, and, while the contributions to  D are 
confined to about one decade in the wavenumber range, contributions to Go are spread 
over more than two decades in wavenumber. This latter trend is similar to that 
reported by Mestayer (1982) (his figure 10a) for spectral contributions from the 
production and dissipation terms to 3 in a turbulent boundary layer. In his flow, 
R, was relatively high ( x 600) and the peaks in production and dissipation were 
separated by about two decades. While there is littlle doubt that D has been shifted 
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k,', 

FIGURE 11. Spectral contributions to the budget of (aO/az)z: - , total dissipation (term VII )  ; 
-_ , first term of V (production) (note the different scales). 

to higher frequencies, with respect to  the dissipation of (or presumably 82), this 
shift is evident also for the production, the peak in Co occurring a t  a wavenumber 
- k, 1, which is higher by a factor of almost 100 than that at which the production of 
q2 peaks (Mestayer 1982). The fact that  the production of (aO/az)2 no longer occurs 
in the strongly anisotropic part of the spectrum tends to  corroborate the previous 
conclusion concerning the approach to isotropy of the dissipation terms of ( a t I / a ~ ) ~ .  
A more detailed analysis of the small departures from local isotropy of the dissipation 
of (aO/ax)z would be possible if a detailed spectral budget of (ae/az)2 were available ; 
such a budget has not been attempted here in view of the assumptions that would 
be required in connection with the production terms that have not been measured. 
It is worth noting, however, that  all terms in the spectral budget of @ are relatively 
easy to  obtain experimentally; such a budget could help quantify the departures from 
local isotropy of the three dissipation components of s". 

The dominance of the transport equation for (aO/az)2 by the production (due to 
fine-scale interactions) and dissipation terms mirrors the approximate balance 
between the production and dissipation terms in the isotropic form of the equation 
for the mean-square fluctuating vorticity (e.g. Champagne 1978). Champagne's 
results indicated the expected increase, with increasing Reynolds number, of both 
production and dissipation terms. The Reynolds-number behaviour of (au/az) (a6/ax)2,  
reported by Antonia & Chambers (1980), would suggest a Reynolds-number depen- 
dence of the important terms in the ( a t I / a ~ ) ~  budget analogous to that of the main 
terms in the vorticity fluctuation budget. It would be desirable to have measurements 
of the second derivatives for Reynolds numbers larger than in the present investigation 
to  check whether or not the small departure from local isotropy persists. The present 
investigation does not provide an explanation for the relative magnitudes of the 
components of and their possible variation with different flows. Consideration of 
the transport equations for (aO/ay)2 and (aO/az)2, although difficult from a measurement 
viewpoint, should be a worthwhile subject for future investigation. 
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